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1. INTRODUCTION 

Propositional dynamic logic (PDL), as introduced by Fischer and 
Ladner (1979) is the propositional part of the dynamic logic of Pratt 
(1976). Our aim in this paper is to answer a basic question: Does every 
alternation of modalities add to the expressive power of the logic? We give 
a positive answer to the question by building models where modalities 
behave (somewhat) like quantifiers in first-order logic. 

The structure of the paper is as follows. The remainder of this section 
contains some basic definitions. Section 2 introduces our Turing machine 
models. In Section 3 we present an arithmetical hierarchy of PDL. 
Section 4 contains conclusions and open problems. 

1.1. Propositional Dynamic Logic 

We briefly define the syntax and semantics of PDL. We refer to 
(Harel, 1984) for basic facts concerning PDL theory. 

Syntax. The basic objects are two sets of primitives: (/)0 the basic 
formulas, and .d 0 the basic programs. 

Programs and formulas are defined inductively. 

1. e (the null program) and the basic programs are programs. 

2. if ry, and fJ are programs and p is a formula then (ry,; fJ), (tx u fJ), 
(p?), (tx*) are programs. 

3. true, false, and the basic formulas are formulas. 
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4. if p and q are formulas and a is a program then p 1\ q, ,p, 
(tJ.)p are formulas. 

The letters p, q, r, .." are reserved as metavariables for formulas and 
tJ., fJ, (, ..., as metavariables for programs. 

Semantics. A structure si of PDL is a triple si = (W, n, p), where 
n:t:Po-+2w,p:L1o-+2wxw. The extension of p and n to programs and 
formulas is as follows: 

1. p(8)=0 

2. p(a;fJ)=p(a)op(f3) 

3. p(aufJ) p(a)up(f3) 

4. p(a*) (p(a))* 

5. p(p?)= {(w, w)/wEn(p)} 

6. n(true) = W 

7. n(false)=0 

8. n(pvq)=n(p)un(q) 

9. n(,p)= W-n(p) 

10. n«a) p)= {WE W/3v: «w, v)Ep(a) 1\ vEn(p»}. 

We write si, W F p just in case WE n(p). We say that p and q are equivalent 
in si (p == q in .sat) if for all WE W, 

si, W F p iff W F q; 

p and q are equivalent iff they are equivalent in all structures. 

2. TURING MACHINE MODELS 

Our intention is to introduce a special family of models having as univer
ses finitely generated free monoids. The basic programs and formulas 
abstract the elementary actions and tests performed by a Turing machine, 
viewed as a rewriting device. 

Let V be a finite alphabet, V* be the free monoid generated by V and ). 
be the empty word. Suppose that V contains all the tape symbols and all 
the state symbols of a certain Turing machine. The machine can be easily 
seen as a rewriting device. (See (Saiomaa, 1973) for details.) 

Consider the following examples of transitions of a Turing machine: 

(1) wxqw' 1- wq'x'w', a move to the left 

(2) wqx # 1- WX'q'y #, a move to the right, 
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where w, w' are words over V; x, x' are symbols, q, q' are state symbols, 
and # is the boundary marker, all elements of V. 

The analysis that follows will identify a natural way to construct the 
models by focusing on the elementary components of the computation 
process described as a rewriting system. The two basic components that we 
identify are actions and tests. They will be the meaning of the syntactic 
primitives basic programs and basic formulas, respectively. 

Regarding actions, we remark that basically there are symbol transfor
mation (x ~'~ q', q ~~ x') and symbol construction (extending the work
space) p_ ~ y). Concerning tests, the machine tests membership in some 
simple sets: V*wqV* in (1) and V*qx# in (2). We might choose various 
classes of test sets. We can take (a) the simplest class containing the above 
sets. The least class containing the alphabet symbols and closed under " U, 

*, i.e., is class of regular sets. On the other hand, (b) we can consider the 
most general class for which the tests are effective, namely the recursive 
sets. It happens that both these classes are suitable for our separation 
results. 

In our development we are going to consider option (b) the recursive 
sets; the results obtained by considering option (a) are similar. Let us 
remark that the "programs" we can write using our actions and tests are 
lightly more general that the ones obtained by the exact simulation of 
Turing machines, but certainly do not lead outside the computational 
power of the Turing machines. 

2.1. Defining the Models 

Let N {Xl' X 2 , ... ,} be an infinite alphabet: 

1. The set of basic formulas f/Jo is the collection of all formulas p R 

such that R is a recursive set over a finite subset of N. 

2. The set of basic programs Llo consists of all programs of the forms: 
Xi-X} i,j;:::: 1, or A""?Xj i;:::: 1. 

A Turing machine model is defined to be .s1 = (K*, n, p), where K is a 
finite subset of Nand n, p are given for f/Jo and respectively Llo as follows: 

n(pR) if R c K* then Reise 0 
p(xi-x) = {(w, w')1 w, w' EK*, W W1XiW2, w' = W1XjW2} 

P(),~Xi) {(w, w')lw, W'EK*, W=W 1W2, w' W1XiW2}· 

AN EXAMPLE. We are going to define a formula and explain the 
behaviour of the programs involved. Let V be a finite subset of Nand 
V= {ii Ia E V}. Let rI., (J, y be the programs: 

, 2 • I - ) .1 ,--.2 
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0: = ().-vv> i); (UaeV(A.-vv>a»* 


Pi= ((#v*r-liv*(~v*)m-i)? 


Y (UaE v (a-vv> a)* 

and the formula qR' where R (~v*)m. 

The program 0: on a certain input word u non-deterministically inserts 
one i symbol and several a for a E V. The program Pi is a test; the intention 
is to apply Pi to the output provided by CI. and to control the position 
where CI. inserts. The outputs of 0: that will pass the test Pi are the ones that 
have the barred symbols in the ith group ~v*. The role of"l is to get rid 
of the bars. The formula qR is true only for bar-free symbols. Consider the 
formula P= (0:; Pi;Y) qR' We claim that 

d,UFP 
Indeed, 

d,UFP 

iff 

U2=#Wl~ ···~wmand 

Ul=!tWl~···j:;Wi-dhvi~Wi+l"·#Wm and 

u j:;w1j:;··· #Wi-l~Wi+ l!t· .. ~wm iff 

UE (~v*)m 1 

3. THE ARITHMETICAL HIERARCHY 

We analyse the expressive power of PDL in the Turing machine models 
defined in the previous section. It turns out that the PDL formulas define 
exactly the arithmetical sets. The following defines an arithmetical-like 
hierarchy within the PDL formulas. The result of Theorem 1 shows 
that the resulting classes form a strict hierarchy, that is, alternation of 
modalities adds to the expressive power of PDL. 

DEFINITION 1. We define the classes of formulas L?' and TI?', n ~ 0 as 
follows: 

1. L~DL = TIb'DL = the class of PDL formulas which are modality-
free. 

2. L:~~ the class of formulas of the form (ex) p, where CI. is a 
modality-free program, and P is in TI:;DL, n ~ O. 

n las 
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3. n~?\' = the class of formulas of the form [0:] p, where 0: is a 
modality-free program, and p is in L~DL, n ~ 0. 

We are referring to (Rogers, 1967) for the definition of the arithmetical 
hierarchy of sets. A first-order formula (predicate) defining a set in a class 
'l! of the arithmetical hierarchy is said a 'l!-formula (predicate). For 
an n-ary predicate b defined on (V* t, consider its encoding 
Lo {~Wl~' ··~wnl b(Wl' ...• wn)}, where ~¢ V. It is easy to remark the 
relation between band L J . 

LEMMA 1. b is a L~ (n~) predicate iff L" belongs to L~ (n~). 

The next lemma gives the starting point for defining the arithmetical sets 
by PDL formulas. A program (formula) is called modalitY~rree if it contains 
no 0 or symbols. 

LEMMA 2. For every modality~ree program (x, its input-output prddicate 
RaCX, Y) defined by 

R",(w, w') iff w(Xw' 

is recursive, i.e., a Lg-predicate. 

Proof We can observe that the program rules are "non-decreasing," so 
we can accept L R• with a Turing machine in linear space. The simulation of 
(X can be done backwards. To see if a word w' is in LRx we perform on w' the 
reverse transformations given by (X and then check if the result is w. I 

LEMMA 3. For every r.e. set L, (i.e., L E L?) there exist a LiDL-formula 
p, (p = «(X> q, having (X and q modality-free), and a structure d, such that in 
d, n(p) = L. Conversely, every LiDL-formula defines in every structure an 
r.e. set. 

Proof Let T be a Turing machine accepting L. T has V as tape 
alphabet, Q as the state set, qo E Q as the initial state, # E Q as the initial 
state, # E Vas the boundary marker, Ql as the final state set, and F as the 
set of rules. 

Members of F are rules of the forms: 

1. qa-,>q'b 

2. qac -'> aq'c 

3. qa#-,>aq'd# 

4. cqa -'> q'ca 

5. #qa -'> #q' da. 

uas. '"' 
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The language accepted by Tis L(T) = {w E V* I #qo w# =* # WI ql W2 #, 
ql E QI' WI' W2 E (V - { # })*}. 

The structure, we are interested in, is d = ( V*, 11:, p). For each rule r, we 
shall associate the programs rx" fJ" Yr such that rx r; fJ r; Yr will implement r. 
We consider case 3, and denote the rule r3; the other cases are similar. Let 

rxr3=q~a;a~q'; #~d;),~#-

fJr3 = (V*aijd#- V*)? 

Yr3 = a~ a; ij' ~ q'; d~ d; #- ~ #. 

Consider now the formula p= «((UrEF(rxr;fJr;Yr))*;qR?) true, where 
R=#(V-{#})*QI(V-{#})* #. 

It is not difficult to see that in d, 

W FP iff WE L(T). 

For the TI? case, replace 0 with D and true with false in p. 
The proof of the converse is trivial. I 

COROLLARY 1 (Berman-Paterson theorem). PDL is weaker without 
tests. 

Proof PDL without tests, denoted in (Berman, Paterson, 1981), 
PDLo, is PDL restricted to ?-free formulas. It is easy to observe that in our 
models such formulas define only regular sets. On the other hand, with 
tests, the expressive power increases, by Lemma 3, to I.? u TI? I 

LEMMA 4 (The quantifier-modality correspondence). Let V be a finite 
alphabet and L <:; V* be a set in I.e (TIe), n ;;;: O. Then there exist a structure 
d, and I.~DL (TI~DL)-formula PL such that 11: d (PL) = L. (I.e., there are 
modality-free programs rx I, ... , rx" such that 

WEL iff wFPL=(rx l )[ rx 2J···{rx,,}p 

(wEL iff WFPL=[rx IJ( rx 2)···{rxn }p), 

where { } is ( ) or [J depending on the parity of n. 

Proof Let d=((Vu{~})*,11:,p) andPL= (rxl)[rx2J··· {rx,,}p be the 
formula given for I.e; similar notation for TI~. 

We prove by induction on n that for every L <:; (Vu ~)*, if L E I.e(TIe) 
then there exists a formula p L of the above form, such that 1r.d (p L) = L. 

Lemma 3 gives us the case n = 1. Indeed, the extension to L <:; (Vu ~)* is 
trivial. 

£ z: .• • 
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Assume the lemma for n: for every L E L~ (n~), there exists p L with 
w 1= PL iff WE L: 

• The case 3. Let L' E L~ + I' Then there is a n~-predicate D(XI' X 2 ) 

such that 

Lemma 1 gives us that L;, {~wI1~w2ID(WI' W2)}En~. By induction, there 
exists PL, = [a1] <!X2 > ... {an} p such that n(PL.) = La· 

We construct now a formula p L by using PLb and the programs a, 13, y 
described in the example of Section 2.1. Take PL=«A~~);a;p;y>po' 
Because n(PL,) = {~Wl~W2ID(Wl' W2)}, we can get, similarly as in the 
example, 

W 1= PL 

The programs a, 13, yare modality-free. Therefore, the formula 

is an alternating formula, of the desired form, for the set L. 

• The case V. Take formula p L as [(). """ ~); a; 13; y; (Vv ~)*?Jpo. I 

LEMMA 5. For any PDL formula p and any structure si, n,,,..(p) is an 
arithmetic set. 

Proof We use structural induction on formulas. Define I(p) as follows: 

• I(false) = I( true) I(p) = 0, for any basic formula p. 

• I(p v q) = 1 + I(p) + I(q) 

• l(ip)=l+/(p) 

• /«!X >p ) I( [a] p) = 1+ I( p) + L {/(q) Iq a subprogram in a}. 

Let us fix a structure si. We are going to construct for any formula pan 
arithmetic predicate Fp(X) such that for every w: 

Consider formula p with l( p) = 0, and the structure si. We have 
FtruAX) = (X = X), Ffalse(X) -, X). For a basic formula p defining a 
regular set R in si, which is ceertainly recursive, take Fp(X) as a recursive 
predicate describing R. 

Consider now Fp(X) defined for any formula p' with [(p') ~ n and con
sider p a level n + 1 formula: 

)1 
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Cases v and I. Ifp = q v r then take Fp(X) = FiX) v F,(X). In case 
p Iq, we put Fp(X) 1 Fq(X). 

Case <>. Lemma 2 states that every modality-free program has its 
input-output predicate R,.(X, Y) recursive. Programs contain modalities as 
part of their tests. Let us consider a test, i.e., a program of the form r?, with 
l(r) ~ n. By the induction hypothesis, F,(X) exists, so we can define 
R,?(X, Y)=F,(X» v Equal(X, Y), where Equal(w 1, w2 ) holds iff WI =w2 • 

To handle; and U we consider the equations: 

Rp;)'(X, Y) = 3Z(Rp(X, Z) /\ Ry(Z, Y) 

Rpuy(X, Y) Rp(X, Y) v Ri(X, Y). 

In order to obtain the *-equation, we shall adapt the construction 
from (Salomaa,1973, p.115). We start by defining several predicates: 
B, E, S, D, T: 

• 	 B(wl' w2 ) holds iff 3w 3 , such that W 2 = #Wl # W3 

• 	 E(wl' w2 ) holds iff 3M'], such that W 2 W3 W l 

S(Wl' W2) holds iff WI is a subword in W2 

• 	 D(w) holds iff wi: #w' 


T(X, Z) = B( # X #, Z) /\ D(Z) /\ E( #, Z) /\ (\1 Y)(\1 W) 

[IS(# Y# W#, Z) v S(#, Y) v S(#, Z) 

v (3 Yd(3 Y2 )(3 Y3 )(3 W2 ) 

(Y = Y2 Y3 ) /\ (W = Yj W2 Y3 ) /\ Rp( Y2 , W2 )].Yl 

Informally, T(w,u) holds iffu=#wo#wl# .. ·#wm #, m~l,wo=w, 
and Rp(w;, W i + d, for all i, 0 ~ i ~ m - 1. Now define 

Rp+(X, Y) 3Z(T(X, Y) /\ E( # Y#, Z) /\ IS( #, Y», 

R/I*(X, Y) = Equal(X, Y) v Rp+ (X, Y). 

As 	 a consequence, for any program containing modalities, its input
output predicate is recursive. To complete the induction, if p = <r:J. >q, then 
take Fp(X) 3Y(Rc>(X, Y) /\ Fq( Y». 

The case p [r:J. ] q is similar. I 

COROLLARY 2. Let p be a L;,DL (TI;,DL) formula. Then, for every 

structure st, rr,d(p) belongs to L~ (TIe)· 

THEOREM 1. The following relations hold: 

1. 	 L;,DL -< L::~7, n ~ 0 
2. 	 TI::DL -< TI::~7 , n ~ 0 
3. 	 L;,DL 1= TI;,DL, n > O. 

• 
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Proof 1. Pick L E L~ + 1 - L~' Such a set exists because the arithmetic 
hierarchy of sets is strict (Rogers, 1967). By Lemma 4, we can find a for
mula PL in L~~~ defining L. By Corollary 2, no formula of L~DL can define 
L, because such formulas have their expressive power restricted to L~' The 
proofs of parts 2 and 3 are similar. They are based on corresponding 
properties of the arithmetic hierarchy of sets (Rogers, 1967). I 

4. CONCLUDING REMARKS 

We have shown that alternation of modalities in PDL adds to the 
expressive power of the logic. Our results concern horizontal alternation of 
modalities. The syntax of the logic also provides with the posibility of 
constructing alternation of modalities vertically. For example, 

<[y; (« [IX] p?); p> q?)] r U f: >S 

has 3 levels of vertical alternation. Using equivalences like <IX> p :; <IX; p? > 
true and [1X]p [1X;p?] true we can obtain the same separation result for 
vertical alternation. 

We saw that < > and [ ] enjoy certain quantifier-like properties, binding 
some subparts of formulas and adding to the expressive power, as they are 
supplied alternatively. Somewhat close to the above description are " U, *. 
So we ask two questions about them: 

1. Does addition of " U, * operators increase the expressive power of 
the logic? (e.g., Does the classification of PDL formulas by nesting levels of 
* yield a strict hierarchy?) 

2. Does the Hennessy-Milner logic (HML) (Bloom, Istrail, Meyer, 
1988) possess a similar result: alternation adds to the expressive power? In 
this logic, programs are restricted to be basic, Le., no ?, " U, * are allowed. 

A HML{ormula is given by the following grammar 

where a is a basic program. 
The interest in HML stands from its use in the theory of concurrent 

processes. Separation results are important for classifying concurrent 
processes mechanisms, as well as pointing out fundamental limitations of 
them (see Bloom, Istrail, Meyer, 1988 for one such application). 

,I 'f c.,-__ ,Q 1~_,......."""........- ..t.U__._J...a•..~z~;Z!l""""'_"_."·
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