
Reprinted from INfORMATION AND COMPUTATION Vol. 81, No.3, June 1989
All Rights Reserved by Academic Press, New York and London Prinled,in Belgium

An Arithmetical Hierarchy in

Propositional Dynamic Logic

SORIN ISTRAIL

Department of Mathematics, Wesleyan University,

Middletown, Connecticut 06457

We prove that any alternation of modalities in PDL adds to its expressive power.
The proof uses Turing machine models where PDL formulas define the arithmetical
hierarchy of sets. As a by-product, we obtain a theorem of Berman and Paterson.
© 1989 Academic Press, Inc.

1. INTRODUCTION

Propositional dynamic logic (PDL), as introduced by Fischer and
Ladner (1979) is the propositional part of the dynamic logic of Pratt
(1976). Our aim in this paper is to answer a basic question: Does every
alternation of modalities add to the expressive power of the logic? We give
a positive answer to the question by building models where modalities
behave (somewhat) like quantifiers in first-order logic.

The structure of the paper is as follows. The remainder of this section
contains some basic definitions. Section 2 introduces our Turing machine
models. In Section 3 we present an arithmetical hierarchy of PDL.
Section 4 contains conclusions and open problems.

1.1. Propositional Dynamic Logic

We briefly define the syntax and semantics of PDL. We refer to
(Harel, 1984) for basic facts concerning PDL theory.

Syntax. The basic objects are two sets of primitives: (/)0 the basic
formulas, and .d 0 the basic programs.

Programs and formulas are defined inductively.

1. e (the null program) and the basic programs are programs.

2. if ry, and fJ are programs and p is a formula then (ry,; fJ), (tx u fJ),
(p?), (tx*) are programs.

3. true, false, and the basic formulas are formulas.

280
0890-5401i89 1\3.00
Copyright 1989 by Academic Press, Inc.
AI! rights reproduction in any form reserved

• - ••__a.,..[I111[.....2 ••",11._ ..t"Wl!:===",,--,,=,"''''''''''''-~J¢-'''!q''.~'''''''

HIERARCHY IN PROPOSITIONAL DYNAMIC LOGIC 281

4. if p and q are formulas and a is a program then p 1\ q, ,p,
(tJ.)p are formulas.

The letters p, q, r, .." are reserved as metavariables for formulas and
tJ., fJ, (, ..., as metavariables for programs.

Semantics. A structure si of PDL is a triple si = (W, n, p), where
n:t:Po-+2w,p:L1o-+2wxw. The extension of p and n to programs and
formulas is as follows:

1. p(8)=0

2. p(a;fJ)=p(a)op(f3)

3. p(aufJ) p(a)up(f3)

4. p(a*) (p(a))*

5. p(p?)= {(w, w)/wEn(p)}

6. n(true) = W

7. n(false)=0

8. n(pvq)=n(p)un(q)

9. n(,p)= W-n(p)

10. n«a) p)= {WE W/3v: «w, v)Ep(a) 1\ vEn(p»}.

We write si, W F p just in case WE n(p). We say that p and q are equivalent
in si (p == q in .sat) if for all WE W,

si, W F p iff W F q;

p and q are equivalent iff they are equivalent in all structures.

2. TURING MACHINE MODELS

Our intention is to introduce a special family of models having as univer
ses finitely generated free monoids. The basic programs and formulas
abstract the elementary actions and tests performed by a Turing machine,
viewed as a rewriting device.

Let V be a finite alphabet, V* be the free monoid generated by V and).
be the empty word. Suppose that V contains all the tape symbols and all
the state symbols of a certain Turing machine. The machine can be easily
seen as a rewriting device. (See (Saiomaa, 1973) for details.)

Consider the following examples of transitions of a Turing machine:

(1) wxqw' 1- wq'x'w', a move to the left

(2) wqx # 1- WX'q'y #, a move to the right,

• - ___...III[0_3"'_kl"l"".~='!_"".;r;h=--"'."'"".u_lIII:I!';i;h"",q

282 SORIN ISTRAIL

where w, w' are words over V; x, x' are symbols, q, q' are state symbols,
and # is the boundary marker, all elements of V.

The analysis that follows will identify a natural way to construct the
models by focusing on the elementary components of the computation
process described as a rewriting system. The two basic components that we
identify are actions and tests. They will be the meaning of the syntactic
primitives basic programs and basic formulas, respectively.

Regarding actions, we remark that basically there are symbol transfor
mation (x ~'~ q', q ~~ x') and symbol construction (extending the work
space) p_ ~ y). Concerning tests, the machine tests membership in some
simple sets: V*wqV* in (1) and V*qx# in (2). We might choose various
classes of test sets. We can take (a) the simplest class containing the above
sets. The least class containing the alphabet symbols and closed under " U,

*, i.e., is class of regular sets. On the other hand, (b) we can consider the
most general class for which the tests are effective, namely the recursive
sets. It happens that both these classes are suitable for our separation
results.

In our development we are going to consider option (b) the recursive
sets; the results obtained by considering option (a) are similar. Let us
remark that the "programs" we can write using our actions and tests are
lightly more general that the ones obtained by the exact simulation of
Turing machines, but certainly do not lead outside the computational
power of the Turing machines.

2.1. Defining the Models

Let N {Xl' X 2 , ... ,} be an infinite alphabet:

1. The set of basic formulas f/Jo is the collection of all formulas p R

such that R is a recursive set over a finite subset of N.

2. The set of basic programs Llo consists of all programs of the forms:
Xi-X} i,j;:::: 1, or A""?Xj i;:::: 1.

A Turing machine model is defined to be .s1 = (K*, n, p), where K is a
finite subset of Nand n, p are given for f/Jo and respectively Llo as follows:

n(pR) if R c K* then Reise 0
p(xi-x) = {(w, w')1 w, w' EK*, W W1XiW2, w' = W1XjW2}

P(),~Xi) {(w, w')lw, W'EK*, W=W 1W2, w' W1XiW2}·

AN EXAMPLE. We are going to define a formula and explain the
behaviour of the programs involved. Let V be a finite subset of Nand
V= {ii Ia E V}. Let rI., (J, y be the programs:

, 2 • I -) .1 ,--.2

HIERARCHY IN PROPOSITIONAL DYNAMIC LOGIC 283

0: = ().-vv> i); (UaeV(A.-vv>a»*

Pi= ((#v*r-liv*(~v*)m-i)?

Y (UaE v (a-vv> a)*

and the formula qR' where R (~v*)m.

The program 0: on a certain input word u non-deterministically inserts
one i symbol and several a for a E V. The program Pi is a test; the intention
is to apply Pi to the output provided by CI. and to control the position
where CI. inserts. The outputs of 0: that will pass the test Pi are the ones that
have the barred symbols in the ith group ~v*. The role of"l is to get rid
of the bars. The formula qR is true only for bar-free symbols. Consider the
formula P= (0:; Pi;Y) qR' We claim that

d,UFP
Indeed,

d,UFP

iff

U2=#Wl~ ···~wmand

Ul=!tWl~···j:;Wi-dhvi~Wi+l"·#Wm and

u j:;w1j:;··· #Wi-l~Wi+ l!t· .. ~wm iff

UE (~v*)m 1

3. THE ARITHMETICAL HIERARCHY

We analyse the expressive power of PDL in the Turing machine models
defined in the previous section. It turns out that the PDL formulas define
exactly the arithmetical sets. The following defines an arithmetical-like
hierarchy within the PDL formulas. The result of Theorem 1 shows
that the resulting classes form a strict hierarchy, that is, alternation of
modalities adds to the expressive power of PDL.

DEFINITION 1. We define the classes of formulas L?' and TI?', n ~ 0 as
follows:

1. L~DL = TIb'DL = the class of PDL formulas which are modality-
free.

2. L:~~ the class of formulas of the form (ex) p, where CI. is a
modality-free program, and P is in TI:;DL, n ~ O.

n las

284 SORIN ISTRAIL

3. n~?\' = the class of formulas of the form [0:] p, where 0: is a
modality-free program, and p is in L~DL, n ~ 0.

We are referring to (Rogers, 1967) for the definition of the arithmetical
hierarchy of sets. A first-order formula (predicate) defining a set in a class
'l! of the arithmetical hierarchy is said a 'l!-formula (predicate). For
an n-ary predicate b defined on (V* t, consider its encoding
Lo {~Wl~' ··~wnl b(Wl' ...• wn)}, where ~¢ V. It is easy to remark the
relation between band L J .

LEMMA 1. b is a L~ (n~) predicate iff L" belongs to L~ (n~).

The next lemma gives the starting point for defining the arithmetical sets
by PDL formulas. A program (formula) is called modalitY~rree if it contains
no 0 or symbols.

LEMMA 2. For every modality~ree program (x, its input-output prddicate
RaCX, Y) defined by

R",(w, w') iff w(Xw'

is recursive, i.e., a Lg-predicate.

Proof We can observe that the program rules are "non-decreasing," so
we can accept L R• with a Turing machine in linear space. The simulation of
(X can be done backwards. To see if a word w' is in LRx we perform on w' the
reverse transformations given by (X and then check if the result is w. I

LEMMA 3. For every r.e. set L, (i.e., L E L?) there exist a LiDL-formula
p, (p = «(X> q, having (X and q modality-free), and a structure d, such that in
d, n(p) = L. Conversely, every LiDL-formula defines in every structure an
r.e. set.

Proof Let T be a Turing machine accepting L. T has V as tape
alphabet, Q as the state set, qo E Q as the initial state, # E Q as the initial
state, # E Vas the boundary marker, Ql as the final state set, and F as the
set of rules.

Members of F are rules of the forms:

1. qa-,>q'b

2. qac -'> aq'c

3. qa#-,>aq'd#

4. cqa -'> q'ca

5. #qa -'> #q' da.

uas. '"'

HIERARCHY IN PROPOSITIONAL DYNAMIC LOGIC 285

The language accepted by Tis L(T) = {w E V* I #qo w# =* # WI ql W2 #,
ql E QI' WI' W2 E (V - { # })*}.

The structure, we are interested in, is d = (V*, 11:, p). For each rule r, we
shall associate the programs rx" fJ" Yr such that rx r; fJ r; Yr will implement r.
We consider case 3, and denote the rule r3; the other cases are similar. Let

rxr3=q~a;a~q'; #~d;),~#-

fJr3 = (V*aijd#- V*)?

Yr3 = a~ a; ij' ~ q'; d~ d; #- ~ #.

Consider now the formula p= «((UrEF(rxr;fJr;Yr))*;qR?) true, where
R=#(V-{#})*QI(V-{#})* #.

It is not difficult to see that in d,

W FP iff WE L(T).

For the TI? case, replace 0 with D and true with false in p.
The proof of the converse is trivial. I

COROLLARY 1 (Berman-Paterson theorem). PDL is weaker without
tests.

Proof PDL without tests, denoted in (Berman, Paterson, 1981),
PDLo, is PDL restricted to ?-free formulas. It is easy to observe that in our
models such formulas define only regular sets. On the other hand, with
tests, the expressive power increases, by Lemma 3, to I.? u TI? I

LEMMA 4 (The quantifier-modality correspondence). Let V be a finite
alphabet and L <:; V* be a set in I.e (TIe), n ;;;: O. Then there exist a structure
d, and I.~DL (TI~DL)-formula PL such that 11: d (PL) = L. (I.e., there are
modality-free programs rx I, ... , rx" such that

WEL iff wFPL=(rx l)[rx 2J···{rx,,}p

(wEL iff WFPL=[rx IJ(rx 2)···{rxn }p),

where { } is () or [J depending on the parity of n.

Proof Let d=((Vu{~})*,11:,p) andPL= (rxl)[rx2J··· {rx,,}p be the
formula given for I.e; similar notation for TI~.

We prove by induction on n that for every L <:; (Vu ~)*, if L E I.e(TIe)
then there exists a formula p L of the above form, such that 1r.d (p L) = L.

Lemma 3 gives us the case n = 1. Indeed, the extension to L <:; (Vu ~)* is
trivial.

£ z: .• •

•• • •

286 SORIN ISTRAIL

Assume the lemma for n: for every L E L~ (n~), there exists p L with
w 1= PL iff WE L:

• The case 3. Let L' E L~ + I' Then there is a n~-predicate D(XI' X 2)

such that

Lemma 1 gives us that L;, {~wI1~w2ID(WI' W2)}En~. By induction, there
exists PL, = [a1] <!X2 > ... {an} p such that n(PL.) = La·

We construct now a formula p L by using PLb and the programs a, 13, y
described in the example of Section 2.1. Take PL=«A~~);a;p;y>po'
Because n(PL,) = {~Wl~W2ID(Wl' W2)}, we can get, similarly as in the
example,

W 1= PL

The programs a, 13, yare modality-free. Therefore, the formula

is an alternating formula, of the desired form, for the set L.

• The case V. Take formula p L as [(). """ ~); a; 13; y; (Vv ~)*?Jpo. I

LEMMA 5. For any PDL formula p and any structure si, n,,,..(p) is an
arithmetic set.

Proof We use structural induction on formulas. Define I(p) as follows:

• I(false) = I(true) I(p) = 0, for any basic formula p.

• I(p v q) = 1 + I(p) + I(q)

• l(ip)=l+/(p)

• /«!X >p) I([a] p) = 1+ I(p) + L {/(q) Iq a subprogram in a}.

Let us fix a structure si. We are going to construct for any formula pan
arithmetic predicate Fp(X) such that for every w:

Consider formula p with l(p) = 0, and the structure si. We have
FtruAX) = (X = X), Ffalse(X) -, X). For a basic formula p defining a
regular set R in si, which is ceertainly recursive, take Fp(X) as a recursive
predicate describing R.

Consider now Fp(X) defined for any formula p' with [(p') ~ n and con
sider p a level n + 1 formula:

)1

HIERARCHY IN PROPOSITIONAL DYNAMIC LOGIC 287

Cases v and I. Ifp = q v r then take Fp(X) = FiX) v F,(X). In case
p Iq, we put Fp(X) 1 Fq(X).

Case <>. Lemma 2 states that every modality-free program has its
input-output predicate R,.(X, Y) recursive. Programs contain modalities as
part of their tests. Let us consider a test, i.e., a program of the form r?, with
l(r) ~ n. By the induction hypothesis, F,(X) exists, so we can define
R,?(X, Y)=F,(X» v Equal(X, Y), where Equal(w 1, w2) holds iff WI =w2 •

To handle; and U we consider the equations:

Rp;)'(X, Y) = 3Z(Rp(X, Z) /\ Ry(Z, Y)

Rpuy(X, Y) Rp(X, Y) v Ri(X, Y).

In order to obtain the *-equation, we shall adapt the construction
from (Salomaa,1973, p.115). We start by defining several predicates:
B, E, S, D, T:

• 	 B(wl' w2) holds iff 3w 3 , such that W 2 = #Wl # W3

• 	 E(wl' w2) holds iff 3M'], such that W 2 W3 W l

S(Wl' W2) holds iff WI is a subword in W2

• 	 D(w) holds iff wi: #w'

T(X, Z) = B(# X #, Z) /\ D(Z) /\ E(#, Z) /\ (\1 Y)(\1 W)

[IS(# Y# W#, Z) v S(#, Y) v S(#, Z)

v (3 Yd(3 Y2)(3 Y3)(3 W2)

(Y = Y2 Y3) /\ (W = Yj W2 Y3) /\ Rp(Y2 , W2)].Yl

Informally, T(w,u) holds iffu=#wo#wl# .. ·#wm #, m~l,wo=w,
and Rp(w;, W i + d, for all i, 0 ~ i ~ m - 1. Now define

Rp+(X, Y) 3Z(T(X, Y) /\ E(# Y#, Z) /\ IS(#, Y»,

R/I*(X, Y) = Equal(X, Y) v Rp+ (X, Y).

As 	 a consequence, for any program containing modalities, its input
output predicate is recursive. To complete the induction, if p = <r:J. >q, then
take Fp(X) 3Y(Rc>(X, Y) /\ Fq(Y».

The case p [r:J.] q is similar. I

COROLLARY 2. Let p be a L;,DL (TI;,DL) formula. Then, for every

structure st, rr,d(p) belongs to L~ (TIe)·

THEOREM 1. The following relations hold:

1. 	 L;,DL -< L::~7, n ~ 0
2. 	 TI::DL -< TI::~7 , n ~ 0
3. 	 L;,DL 1= TI;,DL, n > O.

•

SORIN ISTRAIL 288

Proof 1. Pick L E L~ + 1 - L~' Such a set exists because the arithmetic
hierarchy of sets is strict (Rogers, 1967). By Lemma 4, we can find a for
mula PL in L~~~ defining L. By Corollary 2, no formula of L~DL can define
L, because such formulas have their expressive power restricted to L~' The
proofs of parts 2 and 3 are similar. They are based on corresponding
properties of the arithmetic hierarchy of sets (Rogers, 1967). I

4. CONCLUDING REMARKS

We have shown that alternation of modalities in PDL adds to the
expressive power of the logic. Our results concern horizontal alternation of
modalities. The syntax of the logic also provides with the posibility of
constructing alternation of modalities vertically. For example,

<[y; (« [IX] p?); p> q?)] r U f: >S

has 3 levels of vertical alternation. Using equivalences like <IX> p :; <IX; p? >
true and [1X]p [1X;p?] true we can obtain the same separation result for
vertical alternation.

We saw that < > and [] enjoy certain quantifier-like properties, binding
some subparts of formulas and adding to the expressive power, as they are
supplied alternatively. Somewhat close to the above description are " U, *.
So we ask two questions about them:

1. Does addition of " U, * operators increase the expressive power of
the logic? (e.g., Does the classification of PDL formulas by nesting levels of
* yield a strict hierarchy?)

2. Does the Hennessy-Milner logic (HML) (Bloom, Istrail, Meyer,
1988) possess a similar result: alternation adds to the expressive power? In
this logic, programs are restricted to be basic, Le., no ?, " U, * are allowed.

A HML{ormula is given by the following grammar

where a is a basic program.
The interest in HML stands from its use in the theory of concurrent

processes. Separation results are important for classifying concurrent
processes mechanisms, as well as pointing out fundamental limitations of
them (see Bloom, Istrail, Meyer, 1988 for one such application).

,I 'f c.,-__ ,Q 1~_,......."""........- ..t.U__._J...a•..~z~;Z!l""""'_"_."·
• I

L

HIERARCHY IN PROPOSITIONAL DYNAMIC LOGIC 289

ACKNOWLEDGMENTS

Thanks to the referees for valuable detailed suggestions which significantly improved the
paper. One of the referees' reports came in the moment when the author was about to "change
worlds," a process that was "dynamic" but not always "logical." The author wants to thank
that anonymous referee, for the enthusiastic report, which provided with support in a difficult
moment. I want to thank David Harel, which in his quality as editor, provided me with con
tinuous support and patience. Last but not least, I grateful to Albert Meyer and Rohit Parikh
for comments and suggestions about the paper.

RECEIVED August 1982; ACCEPTED March 10, 1988

REFERENCES

BERMAN, F., AND PATERSON, M. (1981), Propositional dynamic logic is weaker without tests,
Theoret. Comput. Sci. 16. 321-328.

BLOOM, B., ISTRAIL, S., AND MEYER, A. R. (1988). Bisimulation can't be traced: Preliminary
Report, in "Proceedings, 15th ACM Symp. Principles of Programming Languages,
POPL 88," pp. 229-239.

FISCHER, M., AND LADNER, R. (1979), Propositional dynamic logic of programs, J. Comput.
System Sci. 18 No.2, 194-211.

HAREL, D. (1984), Dynamic logic. in "Handbook of Philosophical Logic" (D. Gabbay and
F. Guenthner, Eds.), Vol. II, pp.497-604, Reidel, Dordrecht.

PRATT, V. R. (1976), Semantical considerations on Floyd-Hoare logic, in "Proceedings, 17th
IEEE Symp. on Theory of Computing, STOC 76," pp. 109-121.

ROGERS, JR., H. (1967), "Theory of Recursive Functions and Effective Computability,"
McGraw-Hill, New York.

SALOMAA, A. (1973), "Formal Languages," Academic Press, New York.

Printed by Catherine Press, Ltd., Tempelhof 41, B-80oo Brugge, Belgium

• -"' IU£ • $ J)

